npy读取
使用numpy读取,nibabel.viewers.OrthoSlicer3D显示
1 2
| image = np.load(path) OrthoSlicer3D(image).show()
|
npz读取
使用numpy读取
1 2 3 4 5 6 7
| >>> import numpy as np >>> data = np.load('atlas.npz') >>> data.files ['vol', 'seg', 'train_avg'] >>> vol = data['vol'] >>> seg = data['seg'] >>> train_avg = data['train_avg']
|
使用Pillow(PIL)显示
1 2 3 4 5 6 7
| >>> vol.shape (160, 192, 224) >>> seg.shape (160, 192, 224) >>> from PIL import Image >>> im = Image.fromarray(seg[10]) >>> im.show()
|
使用Matplotlib
1 2 3 4
| >>> import matplotlib.pyplot as plt >>> plt.imshow(seg[10], cmap='Greys_r') <matplotlib.image.AxesImage object at 0x00000257BF085D00> >>> plt.show()
|
保存为npy格式
1 2
| import numpy as np np.save('test',image)
|
保存为npz格式
numpy.savez() 函数将多个数组保存到以 npz 为扩展名的文件中。
1
| numpy.savez(file, *args, **kwds)
|
参数说明:
- file:要保存的文件,扩展名为 .npz,如果文件路径末尾没有扩展名 .npz,该扩展名会被自动加上。
- args: 要保存的数组,可以使用关键字参数为数组起一个名字,非关键字参数传递的数组必须放在关键字数组的前面,非关键字数组会自动起名为
arr_0
, arr_1
, … 。
- kwds: 要保存的数组使用关键字名称。
1 2 3 4 5 6 7
| filename = '文件名' a = np.ones([2,2]) b = np.ones([3,3]) np.savez(filename, data1=a, data2=b)
data = np.load(filename) data.files
|
nii读取
使用nibabel
1 2 3 4 5 6 7 8
| >>> import nibabel as nib >>> from nibabel.viewers import OrthoSlicer3D >>> filename = 'S11.delineation.skullstripped.nii.gz' >>> img = nib.load(filename) >>> data = img.get_fdata() >>> OrthoSlicer3D(img.dataobj).show <bound method OrthoSlicer3D.show of <OrthoSlicer3D: (160, 192, 160)>> >>> OrthoSlicer3D(img.dataobj).show()
|
nii保存
1 2 3 4 5
| import nibabel as nib
nib.Nifti1Image(img1.get_data(),affine=newaffine).to_filename('2_newnew.nii')
nib.save(nib.Nifti1Image(array, affine), filename)
|
读取mhd
1 2 3 4 5 6 7
| import SimpleITK as sitk path = 'xxx.mhd' itkimage = sitk.ReadImage(path) image = sitk.GetArrayFromImage(itkimage)
from nibabel.viewers import OrthoSlicer3D OrthoSlicer3D(image).show()
|
pkl读取
1 2 3 4 5
| def pkload(fname): with open(fname, 'rb') as f: return pickle.load(f) pkload(path)
|
pkl保存
1 2 3 4 5
| def savepkl(data, path): with open(path, 'wb') as f: pickle.dump(data, f) savepkl(data=(data), path=name + ".pkl")
|