A typical training procedure for a neural network is as follows:
(神经网络的典型训练过程如下:)
Define the neural network that has some learnable parameters (or weights)
(定义具有一些可学习参数(或权重)的神经网络)
Iterate over a dataset of inputs
(遍历输入数据集)
Process input through the network
(通过网络处理输入)
Compute the loss (how far is the output from being correct)
(计算损失(输出与正确目标的距离))
Propagate gradients back into the network’s parameters
(将梯度传播回网络参数)
Update the weights of the network, typically using a simple update rule:
weight = weight - learning_rate * gradient
(更新网络的权重,通常使用一个简单的更新规则:
weight = weight - learning_rate * gradient
)